Neural Activation During Submaximal Contractions Seems More Reflective of Neuromuscular Ageing than Maximal Voluntary Activation
نویسندگان
چکیده
This study aimed at testing the hypothesis that differences in neural activation strategy during submaximal but not maximal plantarflexions exist between young and older men. Eleven young men (YM, 26 ± 4 years) and thirteen old men (OM, 76 ± 3 years) volunteered for the investigation. Maximal voluntary torque (MVT) was 38.2%, lower (p < 0.001) in OM than in YM, while voluntary activation was equivalent (~97%). The relationship between the interpolated twitch-torque and the voluntary torque (IT-VT relationship) was composite (curvilinear + exponential) for both age-groups. However, the OM showed accentuated concavity, as attested by the occurrence of the deviation from linearity at a lower contraction intensity (OM: 54.9 vs. YM: 71.9% MVT). In conclusion, ageing does not affect the capacity to fully activate the plantar flexors during maximal performances, but it alters the activation pattern for submaximal levels of effort. The greater age-related concavity of the IT-VT relationship suggests that, during submaximal contractions, OM need to reach a level of activation higher than YM to develop an equivalent relative torque.
منابع مشابه
Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions
Babault, Nicolas, Michel Pousson, Yves Ballay, and Jacques Van Hoecke. Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol 91: 2628–2634, 2001.—Maximal and submaximal activation level of the right knee-extensor muscle group were studied during isometric and slow isokinetic muscular contractions in eight male subjects. The activation le...
متن کاملActivation of human quadriceps femoris during isometric, concentric, and eccentric contractions.
Maximal and submaximal activation level of the right knee-extensor muscle group were studied during isometric and slow isokinetic muscular contractions in eight male subjects. The activation level was quantified by means of the twitch interpolation technique. A single electrical impulse was delivered, whatever the contraction mode, on the femoral nerve at a constant 50 degrees knee flexion (0 d...
متن کاملNeuromuscular adjustments that constrain submaximal EMG amplitude at task failure of sustained isometric contractions.
The amplitude of the surface EMG does not reach the level achieved during a maximal voluntary contraction force at the end of a sustained, submaximal contraction, despite near-maximal levels of voluntary effort. The depression of EMG amplitude may be explained by several neural and muscular adjustments during fatiguing contractions, including decreased net neural drive to the muscle, changes in...
متن کاملObservations on force enhancement in submaximal voluntary contractions of human adductor pollicis muscle.
It has been observed consistently and is well accepted that the steady-state isometric force after active muscle stretch is greater than the corresponding isometric force for electrically stimulated muscles and maximal voluntary contractions. However, this so-called force enhancement has not been studied for submaximal voluntary efforts; therefore, it is not known whether this property affects ...
متن کاملNeural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training.
Despite full voluntary effort, neuromuscular activation of the quadriceps femoris muscle appears inhibited during slow concentric and eccentric contractions. Our aim was to compare neuromuscular activation during maximal voluntary concentric and eccentric quadriceps contractions, hypothesizing that inhibition of neuromuscular activation diminishes with resistance training. In 15 men, pretrainin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2016